目 录 上一节 下一节 查 找 检 索 手机阅读 总目录 问题反馈
4.1 一般规定
		4.1.1 城市轨道交通结构的场地与地基应考虑下列宏观震害或地震反应:
		    1 强烈地震动造成场地、地基的失稳或失效,包括土层液化、震陷、地裂缝、滑坡等;
		    2 地表断裂错动,包括地表基岩断裂及构造性地裂造成的破坏;
		    3 局部地形、地貌、地层结构的变异引起地震动异常造成的特殊破坏。
		4.1.2 城市轨道交通结构的场地与地基的勘察和评价应至少包括下列内容:
		    1 确定场地土的类型和场地类别;
		    2 对可能产生滑坡、塌陷、崩塌和采空区等的岩土体,进行地震作用下的地基稳定性评价;
		    3 对判别为液化的土层,根据液化等级提出处理方案;当不进行抗液化处理时,应计入液化效应的影响对土层的设计参数进行修正;
		    4 划分场地抗震地段类别。
条文说明
    
	4.1.2 根据城市轨道交通结构的特点,本条给出了修建城市轨道交通工程进行工程结构抗震设防时,应该对场地与地基进行勘查和评价的内容。一共4款,这些内容虽各不相同,但又互有交叉,应该根据场地的条件和工程的不同情况与要求,进行其中一项或多项工作。
	查找
	上节
	下节
	
	
	
    条文
说明 返回
顶部
	
                    说明 返回
顶部
- 上一节:4 场地、地基与基础
 - 下一节:4.2 场地
 
目录导航
- 前言
 - 1 总则
 - 2 术语和符号
 - 2.1 术语
 - 2.2 符号
 - 3 基本要求
 - 3.1 抗震设防要求
 - 3.2 抗震性能要求
 - 3.3 地震反应计算
 - 3.4 减震设计
 - 3.5 地震反应观测
 - 4 场地、地基与基础
 - 4.1 一般规定
 - 4.2 场地
 - 4.3 地基与基础
 - 4.4 可液化场地
 - 4.5 场地地震反应分析
 - 5 地震作用
 - 5.1 一般规定
 - 5.2 水平向设计地震动参数
 - 5.3 竖向设计地震动参数
 - 5.4 设计地震动加速度时程
 - 6 地震反应计算
 - 6.1 一般规定
 - 6.2 地面结构弹性反应谱方法
 - 6.3 地面结构弹塑性反应谱方法
 - 6.4 地面结构非线性时程分析方法
 - 6.5 支座地震反应计算方法
 - 6.6 隧道与地下车站结构横向地震反应计算的反应位移法
 - 6.7 隧道与地下车站结构横向地震反应计算的反应加速度法
 - 6.8 隧道纵向地震反应计算的反应位移法
 - 6.9 隧道与地下车站结构地震反应计算的时程分析方法
 - 7 抗震性能的验算方法
 - 7.1 一般规定
 - 7.2 钢筋和钢骨混凝土构件
 - 7.3 钢管混凝土构件和钢构件
 - 7.4 基础
 - 7.5 支座
 - 7.6 梁端支承长度和行车安全
 - 7.7 隧道与地下车站结构
 - 8 高架区间结构
 - 8.1 一般规定
 - 8.2 地震反应计算
 - 8.3 抗震性能验算
 - 8.4 抗震构造细节
 - 8.5 抗震措施
 - 9 高架车站结构
 - 9.1 一般规定
 - 9.2 地震反应计算
 - 9.3 抗震性能验算
 - 9.4 抗震构造措施
 - 10 隧道与地下车站结构
 - 10.1 一般规定
 - 10.2 隧道结构地震反应计算
 - 10.3 地下车站结构地震反应计算
 - 10.4 抗震性能验算
 - 10.5 抗震构造措施
 - 附录A 支座的恢复力模型
 - 附录B 基于集中参数模型的静力与动力分析方法
 - B.1 桩基础集中参数建模方法
 - B.2 扩大基础集中参数建模方法
 - B.3 静力非线性分析
 - B.4 动力非线性分析
 - 附录C 多点输入反应谱组合系数的计算方法
 - 附录D 动力分析中基础的等代弹簧法
 - D.1 桩基础等代弹簧
 - D.2 扩大基础等代弹簧
 - 附录E 反应位移法中土层位移的简单确定方法
 - 附录F 钢筋和钢骨混凝土构件抗剪能力计算方法
 - F.1 柱式构件的抗剪能力
 - F.2 板构件的抗剪能力
 - 附录G 构件变形能力计算方法
 - G.1 钢筋和钢骨混凝土构件变形能力计算方法
 - G.2 钢管混凝土构件变形能力计算方法
 - G.3 钢构件变形能力计算方法
 - 本规范用词说明
 - 引用标准名录
 
- 
                        笔记需登录后才能查看哦~
                    
 
 
京公网安备110105014475